101. Reaktionen von 1,2-Bis(trimethylsilyl)iminen mit Selen- und Tellur-halogeniden

von Richard Neidlein* und Dagmar Knecht¹)

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-6900 Heidelberg

(6. IV. 87)

Reactions of 1,2-Bis(trimethylsilyl)imines with Selenium and Tellurium Halogenides

The reactions of benzil-bis(trimethylsilyl)imine and phenanthrene-9,10-bis(trimethylsilyl)imine with SeOCl₂, SeCl₄, and TeCl₄ are described.

Alkali-bis(trimethylsilyl)amide [1] reagieren mit nicht enolisierbaren Ketonen zu (Trimethylsilyl)iminen [2]. Im Jahre 1968 setzten *Tuchtenhagen* und *Rühlmann* [3] die 1,2-Diketone Benzil und 9,10-Phenanthrenchinon mit Natrium-bis(trimethylsilyl)amid um und erhielten in benzolischer Lösung unter N₂ das Benzil-bis(trimethylsilyl)imin (1) in 91 % sowie des Phenanthren-9,10-bis(trimethylsilyl)imin (2) in 34% Ausbeute. Durch Reak-

¹⁾ D. Knecht, Dissertation, Universität Heidelberg, 1987.

tionen mit Schwefel-halogeniden wie SCl₂, SOCl₂ und SO₂Cl₂ entstanden die entsprechenden 1,2,5-Thiadiazole, 1,2,5-Thiadiazol-1-oxide und 1,2,5-Thiadiazol-1,1-dioxide.

In Fortführung unserer Untersuchungen zur Herstellung neuer Chalcogen-diimide mit möglicherweise elektrischer Leitfähigkeit [4–12] interessierte uns das Reaktionsverhalten von 1 und 2 gegenüber Halogen-Verbindungen der höheren Chalcogene Selen und Tellur. Als Reaktionspartner wurden SeOCl₂, SeCl₄ und TeCl₄ eingesetzt. In allen Fällen wurde der Lösung des 1,2-Bis(trimethylsilyl)imins in absolutem Toluol langsam bei Raumtemperatur die Lösung des Halogenids zugetropft. Nach SeOCl₂-Zugabe fiel bei 1 ein bräunlich-gelbes bzw. bei 2 ein rotes Pulver aus. Umkristallisation lieferte die entsprechenden 1,2,5-Selenadiazole 3 [13] und 4 [14] in 70 bzw. 78 % Ausbeute. Setzte man 2 mit SeCl₄ um, entstand ebenfalls 4 in 73 % Ausbeute.

Ein gänzlich anderes Ergebnis zeigte die Umsetzung mit TeCl₄. Während 1 keine einheitlichen Reaktionsprodukte ergab, konnte man bei der Reaktion mit 2 ein orangerotes Pulver isolieren, das sich gemäss MS und 'H-NMR-Spektrum als das 2,2-Dichlorophenanthro[9,10-c][1,2,5]telluradiazol (5) erwies. Es handelt sich um eine O₂- und H₂O-empfindliche Substanz, beim Stehenlassen an der Luft tritt Braun- bis Schwarzfärbung ein.

Das ¹H-NMR-Spektrum ((D₆) DMSO) von 5 zeigt je ein m bei 7,58–7,81 und 8,55–8,60 ppm für H–C(5,10) und H–C(6,9) bzw. H–C(4,11) und H–C(7,8). Der Molekularpeak M^{++} 404 im MS von 5 besitzt die typische Isotopenverteilung von 2 Cl-Atomen. Nach Abspaltung der beiden Cl-Radikale unter Bildung von m/z 369 und 334 erfolgt die Eliminierung des Te-Atoms zum Basispeak m/z=204, der sich analog zu denjenigen der Se-Verbindung 4 fragmentiert.

Wir danken der BASF AG, dem Verband der Chemischen Industrie – Fonds der Chemie, der Volkswagenstiftung sowie der Deutschen Forschungsgemeinschaft für besondere Unterstützung unserer Untersuchungen, Herrn G. Beutel sowie Frau G. Jost für die ¹H- und ¹³C-NMR-Spektren, den Herren H. Rudy, P. Weyrich und G. Beutel für Massenspektren und Elementaranalysen und der Bayer AG un der Hoechst AG für die Lieferung von Chemikalien.

Experimenteller Teil

Allgemeines. Die Lösungsmittel und Reagenzien wurden nach den üblichen Methoden gereinigt und getrocknet. Alle Reaktionen wurden unter N_2 durchgeführt. Schmp.: nicht korrigiert; Schmelzpunktmikroskop der Fa. Reichert, Wien. UV/VIS-Spektren (λ_{max} (log ε) in nm): DMR 4 der Fa. Carl Zeiss, Oberkochen. IR-Spektren (cm⁻¹): Perkin-Elmer-Gerät 325. 1 H- und 1 3C-NMR-Spektren (δ in ppm, J in Hz): HX-90 E (90 MHz, 1 H-NMR) und WM-250 (250 MHz für 1 H und 62,89 MHz für 1 3C) der Fa. Bruker, Karlsruhe. Massenspektren (m/z (%)): MAT 311 A der Fa. Varian, Bremen. Elementaranalysen: Automatischer C,H,N-Analysator der Fa. Heraeus, Hanau

3,4-Diphenyl-1,2,5-selenadiazol (3). Zu einer Lsg. von 50 mg (0,14 mmol) 1 in 5 ml abs. Toluol tropft man 0,01 ml (0,15 mmol) SeOCl₂ (→Ausfallen von bräunlich-gelbem Pulver). Man lässt über Nacht bei RT. rühren, saugt den Niederschlag ab, wäscht mit abs. Toluol und kristallisiert aus 99 % EtOH um: 32 mg (79 %) 3. Schmp. 145° ([13]: 145°). UV/VIS (CH₃OH): 422 (4,06), 346 (4,07). IR (KBr): 3060, 3030, 1490, 1440, 1390, 1275, 1250, 1090, 1075, 1030, 955, 920, 790, 770, 735, 710, 690, 620, 545, 410, 320. 1 H-NMR (90 MHz, CDCl₃): 7,2-7,43 (m, 10 arom. H). 13 C-NMR (62,89 MHz, CF₃COOD): 131,03, 131,09, 134,16 (3 d, C(2'), C(6'), C(3'), C(5'), C(4')); 133,22 (s, C(1')); 167,58 (s, C(3), C(4)). MS (100 eV, 90°): 286 (76, M^{++}), 183 (95), 156 (4), 143 (8), 103 (100), 80 (4), 76 (33), 63 (3), 51 (15). Anal. ber. für C₁₄H₁₀N₂SE (285,208): C 58,96, H 3,53, N 9,82; gef.: C 59,20, H 3,46, N 9,61.

Phenanthro[9,10-c][1,2,5]selenadiazol (4). Methode A. Zu einer Lsg. von 175 mg (0,5 mmol) 2 in 5 ml abs. Toluol wird bei RT. langsam eine Lsg. von 83 mg (0,5 mmol) SeOCl₂ getropft. Nach ca. 1 h Rühren bei RT. wird der entstandene rote Niederschlag abgesaugt und aus 99% EtOH/Toluol 1:1 umkristallisiert: 100 mg (70%) 4 als blassgelbe Nadeln.

Methode B. Zu einer Lsg. von 175 mg (0,5 mmol) 2 in 5 ml abs. Toluol tropft man bei RT. langsam eine Lsg. von 110 mg (0,5 mmol) SeCl₄ in 5 ml abs. Toluol. Umkristallisation des ausgefallenen roten Pulvers aus 99% EtOH/Toluol 1:1 liefert 71 mg (50%) 4 als blassgelbe Nadeln. Schmp. 209° ([14]: 209−210°). UV/VIS (CH₂Cl₂): 347 (4,18), 342 (4,21), 260 (4,33), 248 (4,64), 242 (4,67), 236 (4,59). IR (KBr):3070, 3040, 2360, 1610, 1450, 1390, 1350, 1320, 1235, 1130, 755, 730, 720, 550, 540, 445. ¹H-NMR (90 MHz, CDCl₃): 7,55−7,82 (*m*, 4H, H−C(5,10), H−C(6,9)); 8,36−8,78 (*m*, 4H, H−C(4,11), H−C(7,8)). ¹³C-NMR (62,89 MHz, CF₃COOD): 126,04 (*s*, C(7a), C(7b)); 125,73, 128,90, 131,57, 135,46 (4 *d*, C(4,11), C(5,10), C(6,9), C(7,8)); 134,84 (*s*, C(3b), C(11a)); 157,42 (*s*, C(3a), C(11b)). MS (100 eV, 112°): 284 (100, *M*+¹¹), 257 (31), 204 (81), 177 (58), 150 (33), 142 (13), 126 (11), 113 (6), 99 (13), 87 (11), 75 (34), 58 (37). Anal. ber. für C₁₄H₈N₂Se (283,192): C 59,15, H 2,82, N 9,86; gef.: C 58,93, H 2,87, N 9,66.

2,2-Dichlorophenanthro[9,10-c][1,2,5]telluradiazol (5). Zu einer Lsg. von 520 mg (1,48 mmol) 2 in 20 mł abs. Toluol gibt man bei RT. tropfenweise eine Lsg. von 405 mg (1,5 mmol) TeCl₄ in 10 mł abs. Toluol (→orange-roter Niederschlag). Man rührt noch ca. 1 h bei RT. und saugt den entstandenen Niederschlag ab: 510 mg (85%) 5, Schmp. 240° (Zers.). IR (KBr): 1675, 1590, 1455, 1405, 1295, 1285, 1230, 1165, 1120, 1015, 930, 770, 760, 720, 530, 430. ¹H-NMR (250 MHz, (D₀) DMSO): 7,58-7,64, 7,75-7,81 (2m, 4H, H-C(5,10), H-C(6,9)); 8,38-8,43 (m, 4H; H-C(4,11); H-C(7,8)): MS (100 eV; 200°): 404 (2, m+¹), 369 (3), 334 (21), 204 (100), 177 (22), 150 (9), 130 (8), 100 (3), 75 (1), 63 (5), 51 (5). HR-MS: 403,9126 (m+¹, $C_{14}H_8Cl_2N_2Te$, ber. 403,9127).

LITERATURVERZEICHNIS

- a) U. Wannagat, H. Niederprüm, Angew. Chem. 1959, 71, 574;
 b) U. Wannagat, H. Niederprüm, Chem. Ber. 1982, 94, 1540.
- [2] C. Krüger, E.G. Rochow, U. Wannagat, Chem. Ber. 1963, 96, 2132.
- [3] V. G. Pesin, Khim. Geterotsikl. Soedin. 1969, 235 (CA: 1969, 71, 22076).
- [4] R. Neidlein, D. Tran-Viet, A. Gieren, M. Kokkinidis, R. Wilckens, H.-P. Geserich, W. Ruppel, Chem. Ber. 1982, 115, 2898.
- [5] A. Gieren, V. Lamm, Acta Crystallogr., Sect. B 1982, 38, 2605.
- [6] D. Droste, Dissertation, Universität Heidelberg, 1983.
- [7] A. Gieren, H. Betz, T. Hübner, V. Lamm, R. Neidlein, D. Droste, Z. Naturforsch., B 1984, 39, 485.
- [8] R. Neidlein, D. Droste-Tran-Viet, A. Gieren, M. Kokkinidis, R. Wilckens, H.-P. Geserich, W. Ruppel, Helv. Chim. Acta 1984, 67, 574.
- [9] A. Gieren, T. Hübner, V. Lamm, Acta Crystallogr., Sect. C 1984, 40, 836.
- [10] A. Gieren, V. Lamm, T. Hübner, M. Rabben, R. Neidlein, D. Droste, Chem. Ber. 1984, 117, 1940.
- [11] A. Gieren, T. Hübner, V. Lamm, R. Neidlein, D. Droste, Z. Anorg. Allg. Chem. 1985, 523, 33.
- [12] R. Neidlein, D. Knecht, A. Gieren, C. Ruiz-Perez, Z. Naturforsch., B 1987, 42, 84.
- [13] V. Bertini, Gazz. Chim. Ital. 1967, 97, 1870.
- [14] N.P. Buu-Hoi, J. Chem. Soc. 1954, 76, 665.